BLACK DIAMOND

SERVICE MANUAL

V.160 – November 2011

www.montrealchargeur.com
www.battelec.ca
www.doctorfleet.com
1. SAFETY PRECAUTIONS

1. Before to start using the Black Diamond Charger, read these instructions carefully.
2. Installation and Service operations can be done by qualified personnel only.
3. To prevent the risk of electric shock, don't touch uninsulated portions of the Black Diamond Charger and the Battery.
4. Manually stop the charger before to disconnect the battery.
5. The charger is suitable for indoor installation, in ambients with abundant ventilation.
6. Don't use the charger near flammable materials.
7. Don't obstruct the ventilation slots and leave sufficient free space around the unit.
8. Don't expose the charger to liquids or excessive dust.
9. Check the conditions of cables and accessories on a regular basis, and replace them immediately if they get damaged.
10. Don't extend the battery cables. Replace them, if necessary, with cables of the same type, length, section and insulation as the original ones.
11. During the installation of the charger, make sure to connect the EARTH conductor properly, and respect all the applicable Safety Standards.
12. Don't modify any part of the charger. Any modification, applied without written authorization of the manufacturer, may generate unsafe operating conditions and will void the warranty.
2. DESCRIPTION

The Black Diamond Charger is suitable to charge lead-acid motive batteries. The operation is completely automatic, and it's managed by a microprocessor control system, composed by a Main Control Board, installed inside of the charger, and an optional wireless Battery Identification Module (WBM), that is permanently connected to the battery.

The power conversion system of the Black Diamond and its optimized charging algorithm help to reduce the charging factor to the minimum value, so the duration of the overcharge/gassing phase and the average temperature of the battery are minimized.

The Black Diamond Charger is equipped with a built-in Real-Time Clock, which allows the user to program the desired start time of the day, the full charge time window and to schedule the weekly equalize cycles.

It is possible to connect the charger to the Fleet Management System DoctorFleet.com, which allows to monitor, program and configure the complete fleet through a WEB based interface, at any time of the day and from anywhere in the World, to send automatic messages by email in case of problems.

The Black Diamond charger features an extensive set of advanced functionalities, including an automatic algorithm for the compensation of the voltage drop of the charging leads. These functionalities are programmable through an Advanced Configuration Menu. Please call your service technician for more details.

The operation is completely automatic, and it's managed by a microprocessor based control system, composed by a Main Control Board, installed inside of the charger, and an optional wireless Battery Identification Module (WBM), that is permanently connected to the battery.
3. INSTALLATION

Conditions of use:

- Temperature (operation): from 0°C to 50°C.
- Temperature (storage): from –20°C to 60°C.
- Relative Humidity: less than 75 %.

ATTENTION!

The Black Diamond Charger can be installed by qualified personnel only.

It's recommended to control that the AC input voltage available at the installation site has the right value, and that the power available is sufficient. The nominal AC input voltages that the charger can accept, and maximum input current and power are reported on the nameplate of the unit.

In order to prevent fires or electrical shock, don't expose the Black Diamond Charger to rain or excessive humidity.

Don't use the Black Diamond Charger near flammable gas, because it contains components (contactors) that may generate sparks during their normal operation.

Don't open the cabinet of the charger.
Only qualified personnel can service the unit.

Allow adequate air flow inside of the unit, in order to prevent excessive heat buildup.

Don't install the unit near materials that may obstruct the air passages, near devices that may generate heat, under the direct sunlight or in presence of excessive dust or mechanical vibration.
CONNECTION OF THE AC INPUT

The charger must be connected to the AC input using an adequate cable and plug, with disconnect switch and fuses.

The AC input wires have to be connected to the AC INPUT TERMINAL BLOCK, that is located on the internal panel. (See yellow label electric warning) Make sure to tighten the terminal block screws with the proper torque, and pull each wire separately in order to verify that they are mounted properly.

If the charger is to be connected to the AC power supply with a flexible jacketed cable, one having a separate grounding conductor should be used. If, for any reason, an input cable which does not include a grounding conductor is used, the equipment must be grounded with separate conductor. Minimum size and color coding requirements must be in accordance with any applicable national or local code.

PROCEDURE

• Read on the data label the AC current value corresponding to the line voltage to which charger is to be connected. Using that current value, select the proper fuses, disconnect switch and power cable sizes, according with any applicable national or local code.
• Check that the charger is disconnected from AC input and battery;
• Open the cabinet;
• Mount the input cable and connect the four power conductors (three phase + ground) to the terminal blocks;
• Close the cabinet;
• With disconnect switch on AC input power line on position “OFF” or “OPEN”, connect the power cable coming from the charger to the switch and, then, install the fuses in the switch.
1-PHASE.

Verity that the AC Input is OFF, and connect the AC Input cable in INPUT position see picture a).
In picture b) the operator can adapt the charger at the correct input voltage.

3-PHASE.

Verity that the AC Input is OFF, and connect the AC Input cable in INPUT position see picture c).
In picture d) the operator can adapt the charger at the correct input voltage.
4. PROGRAMMING

PRELIMINARY CONTROLS

Before to proceed with the programming sequence and before to connect a battery, make sure that the Black Charger has been installed by a qualified electrician, according with the instructions reported in this manual.

Before to use the charger, it’s necessary to control that the ventilation slots are not obstructed, and that all the safety precautions reported in this manual are respected.
STARTUP SEQUENCE

Turn on the charger by moving the main switch to position “1”.

The charger will perform an automatic test of the control circuits, and will wait for a random delay on start.

The display will visualize the following messages.

- **BLACK DIAMOND**
- **SYSTEM CHECK**
 - PLEASE WAIT ...
- **SYSTEM READY**
 - xxx V – xxx A
- **SYSTEM READY**
 - DATE TIME

USER PROGRAMMING MODE

ATTENTION!

Before to program the charger, disconnect the battery.

This condition is necessary in order to activate the User Programming Mode.

Only expert users should modify the settings of the charger.
HOW TO ACTIVATE USER PROGRAMMING MODE

• Press the button DOWN and keep it pressed for 3 seconds
 The display will show the message:

 EDIT PASSWORD

• Enter the Password UP-DOWN-UP-DOWN-UP
 The display will show the message:

 MOD. USER

HOW TO MODIFY A VALUE

• Scroll between the programmable values using the UP/DOWN buttons.

• In order to modify a value, press ENTER and keep it pressed for 2 seconds, until
 the cursor will start blinking over the value that can be modified.

• Modify the value using the UP/DOWN buttons.

• Confirm the modified value by pressing ENTER for 2 seconds, until the cursor will
 disappear. At this point the new value will be saved.

HOW TO RETURN TO NORMAL MODE

• Press the buttons UP and DOWN simultaneously.
PARAMETER 1: NOMINAL OUTPUT VOLTAGE (only MANUFACTURER MODE)

Programmable values: 12-24-36-48-72-80-96-120 Volts
Default value: Nominal voltage of the charger

NOTE: This parameter should be changed only after replacing the control board of the charger.

PARAMETER 2: NOMINAL CHARGING CURRENT (only MANUFACTURER MODE)

Programmable values: From 10 to 400 Amps
Default value: Nominal output current of the charger

NOTE: This parameter should be changed only after replacing the control board of the charger.

PARAMETER 3: GASSING VOLTAGE

Programmable values: from 2.35 to 2.50 V/Cell
Default value: 2.40 V/cell

NOTE: This charging algorithm of the Black charger is adaptive, so it's capable of adjusting the charging curve even if the gassing voltage of the battery deviates significantly from the programmed value. For this reason, this parameter should be modified only when using non-standard batteries, or if the operating temperature is extremely low or high. When a battery temperature probe (optional) is connected, the charger compensate the gassing voltage VS temperature of the electrolyte.

PARAMETER 4: MAXIMUM VOLTAGE

Programmable values: from 2.40 to 2.80 V/Cell, or DISABLED
Default value: 2.80 V/cell

NOTE: This parameter sets a maximum limit for the cell voltage. If this limit is reached, the charge is terminated and a specific error message is given.
PARAMETER 5: MAXIMUM TEMPERATURE (optional)

Programmable values: from 115 to 160 F or DISABLED

Default value: DISABLED

NOTE: This parameter sets a maximum limit for the battery temperature. If this limit is reached, the charge is terminated and a specific error message is given.

This parameter works only if it is installed the temperature sensor probe. In this case the default settings is 140 F. When the charger read the temperature during the charging it applied a temperature compensation voltage.

SPECIFICATIONS:

Nominal Resistance: 100KΩ @ 25°C Two-wire Single Element: NTC Thermistor Vishay P/N 2381-440-03104

Temperature Range: -50°C to 90°C
PARAMETER 6: FINISHING CHARGE

Programmable values:
A) Wa – Finishing Charge 2 Hours [10-12 hours] [I=15-26% of C]
B) Wa – Finishing Charge 3 Hours [10-12 hours] [I=15-26% of C]
C) Wa – Finishing Charge 4 Hours [10-12 hours] [I=15-26% of C]
D) Wa – Finishing Charge 5 Hours [10-12 hours] [I=15-26% of C]
E) Wa – Finishing Charge 6 Hours [10-12 hours] [I=15-26% of C]
F) Wa – Finishing Charge Proportional 25% [10-12 hours] [I=15-26% of C]
G) Wa – Finishing Charge Proportional 33% [10-12 hours] [I=15-26% of C]
H) Wa – Finishing Charge Proportional 50% [10-12 hours] [I=15-26% of C]
I) Wa – Finishing Charge Proportional 66% [10-12 hours] [I=15-26% of C]
J) Wa – Finishing Charge Proportional 75% [10-12 hours] [I=15-26% of C]

Default value:
Usually specified at the order. If not specified, default value is H.

NOTES:
This parameter allows to adjust the finishing rate of the charger, depending on the matching Current VS Capacity that has been chosen at the order. The proper setting of this parameter is useful to maximize the electrical efficiency of the system, and to minimize the temperature rise of the battery during the finishing charge.

EXAMPLE 1)
If the battery capacity is 500 Ah and the time available for charging it is 8-9 hours, the recommended Black Diamond charger should have a nominal current of 100A (~16% of C), and the default curve H (Wa – Finishing Charge Proportional 50%) will be correct.
PARAMETER 7: EQUALIZE INTENSITY

Programmable values: from 1 to 8 hours

Default value: 4 hours

NOTES:
This parameter allows to adjust the duration of the weekly Equalize cycle. In most of the cases the default value of 2 hours works well, but sometimes it can be useful to modify this setting, depending on the status of the battery and on the operating cycle.

IMPORTANT:
The battery will be equalized only during the programmed time window (See parameters 10 and 11). If the Equalize time window is not set, or it's set too short, the battery will not receive a sufficient Equalize.

PARAMETER 8: DATE and TIME

Programmable values: Day/Month/Year, Hour/Minute
Default value: Eastern Time (GMT-5)

NOTE:
It's fundamental to keep the Real Time Clock set to the correct date and time, in order to use all the time base functions. It's necessary to adjust the Clock manually in Daylight saving time periods. The Charger calculates the Day of the Week automatically.

PARAMETER 9: START TIME WINDOW

Programmable values: From 00.00 to 23:59
Default value: From 00.00 to 23:59

NOTE:
This parameter sets a time window during the day in which the charger is allowed to start a new charge cycle.

If a battery is connected outside of this time window, the charger will remain in stand-by mode until the programmed Start time will be reached.

Once the charge cycle has begun, this time window is not considered anymore.
PARAMETER 10 and 11: EQUALIZE TIME WINDOW

Programmable values: Any day, from 00.00 to 23:59
Default value: From SATURDAY at 12.00 to SUNDAY at 22.00

NOTE: These parameters set a time window during the week in which the charger is allowed to fully charge and Equalize the battery.
It's recommended to set a minimum Equalize time of 12 hours after the normal completion of the charge cycle.

PARAMETER 12: WBM ENABLE

Programmable values: Enabled, Disabled, Optional
Default value: Disabled

NOTE: This parameter sets the operation of the charger with the Wireless Battery Identification module WBM (optional).
Three different operating modes are selectable.

Enabled: When a battery is connected, the charger establishes a communication with the WBM and uses the information stored into the WBM to optimize the charge cycle.
Only batteries with WBM installed and properly configured will be charged!

Disabled: The communication of the charger with WBMs is disabled, and any battery (with correct voltage) will be charged.

Optional: When a battery is connected, the charger tries to establish a communication with the WBM.
If a WBM is found, it's used to optimize the charge cycle and to add the battery ID tag on the charge history log.
If a WBM is not found, the battery will be charged anyway.
PARAMETER 13: WIRED IP ADDRESS RS-485

<table>
<thead>
<tr>
<th>Programmable values:</th>
<th>1 to 254</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE: This parameter sets the IP address of the charger, when it's connected to a wired DoctorFleet.com management network.

PARAMETER 14: RESET WIRELESS

<table>
<thead>
<tr>
<th>Programmable values:</th>
<th>Disabled / Try Search.NET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

NOTE: This parameter is used during the setup procedure of a wireless DoctorFleet.com management network.

PARAMETER 15: TEST WIRELESS

<table>
<thead>
<tr>
<th>Programmable values:</th>
<th>Disabled / Try Send Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

NOTE: This parameter is used during the setup procedure of a wireless DoctorFleet.com management network.
5. OPERATION

CONNECTION OF THE BATTERY, AUTOMATIC START

Connect the Battery to the charger, using a connector of adequate size. When the battery is correctly connected, the charger visualizes the following message:

![BATTERY CONNECTED]

WIRELESS CONNECTION TO BATTERY IDENTIFICATION MODULE (OPTIONAL)

If the Battery Identification Module is enabled, a few seconds after the connection of the battery, the charger will try to establish a wireless connection. And the display will visualize the message:

![BATT ID MODULE SEARCHING...]

When the wireless connection is active the charger is ready to start the charging cycle. The display visualizes the message:

![BATT ID MODULE CONNECTED]

At this point, the battery information are transferred to the charger and are visualized on the display.

The charger is now ready to start.

Depending on the programmed start time window (Parameter 8), the charger may enter in stand-by mode, and the display visualizes the message:

![DELAYED START]

Where (hh.mm)A represents the real time at that moment, and (hh.mm)B represents the programmed start time.
When the charge begins, the display visualizes the message:

PREPARING
TO CHARGE

BATTERY VOLTAGE TOO HIGH

If the battery voltage is higher than a maximum threshold, the charge will not start and the display visualizes the message:

BATTERY VOLTAGE
TOO HIGH !!!

If this message appears, it's recommended to verify that the nominal battery voltage matches the nominal voltage of the charger. Probably a wrong battery has been connected.

BATTERY VOLTAGE TOO LOW

If the battery voltage is lower than a minimum threshold, the charge will not start and the display visualizes the message:

BATTERY VOLTAGE
TOO LOW !!!

If this message appears, it's recommended to verify that the nominal battery voltage matches the nominal voltage of the charger. Probably a wrong battery has been connected.

It's also possible that the battery has been deeply discharged, bringing the voltage below the minimum value required for the automatic start the charge.

In this case, it's possible to start the charge manually, by pushing the button DOWN for 5 seconds.
CHARGE CYCLE

When the preliminary controls are complete, the charge starts automatically, and the display visualizes the following information:

- Battery Voltage [Volt]
- Charging Current [Amps]
- Time of Charge [hours.minutes]
- Capacity Returned [Ah]

<table>
<thead>
<tr>
<th>xx.x V</th>
<th>xxx A</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxx Ah</td>
<td>x.x t</td>
</tr>
</tbody>
</table>

The Black Diamond Charger performs an exclusive charge cycle that is composed by stages at constant current and stages at pulsed current, with cool down pauses in between. The management of the charging curve is totally automatic.

Depending on the programming of the Full Charge time window (Parameter 9), when the battery approaches the gassing voltage the charger may suspend the charge (typical opportunity charge cycle). In this situation, the display visualizes the message:

DELAYED OVERCH.

(hh.mm)A → (hh.mm)B

Where (hh.mm)A represents the real time at that moment, and (hh.mm)B represents the beginning of the Full Charge / Overcharge time window.

During the cool down pauses, that are normally inserted during the gassing phase, the display visualizes the message “Cooling”.

<table>
<thead>
<tr>
<th>xx.x V</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxx Ah</td>
<td>x.x t</td>
</tr>
</tbody>
</table>
EMERGENCY STOP

If the battery doesn't reach the gassing voltage within a predetermined time, the charger will suspend the charge, and it will visualize the message

```
EMERGENCY STOP
VGAS NOT REACHED
```

In this case, the charge cannot proceed, and it's necessary to disconnect the battery. It's recommended to control the battery for damaged cells.

AC INPUT BLACK OUT

If there is a black-out of the AC input, while the charge is in progress, the charger will shut down, while the charge parameters will remain in memory.

When the AC input will be recovered, the charger will restart the charge cycle automatically, and the display will show the message:

```
RESTART AFTER
POWER SUPPLY OFF
```

OVERCURRENT PROTECTION

If the AC input voltage is abnormally high and/or the AC input adjustments have not been done correctly (See Chapter “INSTALLATION”), the charging current may reach an excessive value.

In this case, the charger will suspend the charge, and the display will visualize the message:

```
CURRENT
TOO HIGH
```

The charge will not proceed, and it's necessary to disconnect the battery. It's recommended to control the AC input connections of the charger, as explained in Chapter 3 “INSTALLATION”. It's recommended to verify the condition of the battery, as it may have one or more cells in short circuit.
AUTOMATIC STOP

The charger shuts down automatically when the charge is correctly complete, and it will visualize the message:

CHARGE COMPLETE

At this time it's possible to disconnect the battery.

EQUALIZE CYCLE – AUTOMATIC (clock mode)

At the end of the charge, if the battery is left connected to the charger for a sufficient time, the charger activates the Equalize cycle automatically, based upon the programmed schedule.

If the charge cycle ends outside of the programmed Equalize time window, the charger remains in stand-by mode, and the display shows the message:

DELAYED EQUALIZE DAY TIME

Where DAY and TIME represent the beginning of the programmed Equalize time window.

EQUALIZE CYCLE – MANUAL

During the charging of the battery the operator can scroll the menu of the display, and he can force a EQ manual cycle at the end of this cycle.

FORCE MANAUL EQ ENABLED
DESULFATION

The operator can every time interrupt the standard charging and enable with a easy procedure a special desulfation cycle. During the charging the operator can press Enter few seconds and the display shows a desulfation menu, in this menu the operator can select the time during of desulfation and the type of restart of desulfation, infact sometimes it is strategic important to complete a standard charging after a completed desulfation cycle.

REFRESH-MAINTENANCE

This function is useful to keep the battery in perfect condition when it's not used for an long period (weeks, months, ...).

It is sufficient to leave the battery connected to the charger. After a normal termination of the charge and the equalize cycle, the control board will activate the charger automatically for 15 minutes of refresh charge every day.

While the charger waits before to activate a Refresh cycle, the display shows the messages:

```
xx.x V  R.END NR
xxx Ah  x.x t
```

- Battery Voltage [Volt]
- Nr of Refresh cycles already given to the battery
- Total Time of Charge [hours.minutes]
- Total Capacity Returned [Ah]

During cycle Refresh, the display shows the same set of information that are visualized during the normal charge cycle.
DISCONNECTION OF THE BATTERY DURING THE CHARGE

WARNING!
DON'T DISCONNECT THE BATTERY DURING THE CHARGE.
RISK OF EXPLOSION!!!

If it's necessary to disconnect the battery while it's being charged, press the button UP for five seconds, in order to stop the charger manually.

The charger will suspend the charge and the display will show the message:

MANUAL
STOP

At this time it's possible to disconnect the battery.

Eventually, the charge can be restarted, by pressing the button UP for 5 seconds.
5. PROGRAMMING BATTERY ID MODULE

When a battery ID module is installed on a battery for the first time, it must be initialized and programmed, by following this procedure.

Connect the battery to a Black Diamond charger (the Battery Recognition mode must be set to BATTERY ID MODULE or OPTIONAL).

The Black Diamond charger will establish a communication with the New Battery ID module, and it will show the message:

At this point, using the UP/DOWN buttons, it's possible to edit the battery ID information:

- **ID Number** (8 alphanumeric digits, to be confirmed individually by pressing ENTER for 3 seconds)
- Nominal Voltage
- Capacity
- Type

Once all the parameters are set correctly, push the buttons **UP+DOWN Simultaneously** in order to save the data to the ID module.

The programming sequence may take up to 3 minutes, while the charger display will show the message:

When the programming sequence is completed, the display will show the message:

At this point, it's possible to disconnect the battery from the charger.

If the battery is left connected, a charge cycle will be initiated.

The Battery ID Module will keep the information in memory for an unlimited time.

In order to erase the memory, it's necessary to disconnect the ID module from the battery.
PROGRAMMING HARDWARE RULES

During installation and programming activity it is necessary to ensure that the position of the battery power cables and charger cables are correct. As illustrated below, it is important that the cables are not overlapping or entwined in the cables of another battery.

fig.1 correct position of the cables.

fig.2 incorrect position of the cables.

Failure to comply with these instructions may disturb the communication signals from the battery module, if this occurs the charger will generate the following alarm:
6. ENERGY METERING AND HISTORY LOG

The internal memory of the BLACK DIAMOND charger contains a log of the last >250 charge cycles. More than 50 parameters are saved for every charge cycle.

The most significative parameters of the 50 most recent cycles can be visualized on the display of the charger, while the complete history log can be accessed and downloaded through DoctorFleet.com management system.

In order to visualize the 50 most recent cycles, it's sufficient to scroll the menu using the UP-DOWN buttons, and to press ENTER for 3 seconds in order to access the database.

The results of each charge cycle are represented on two pages. Use the UP-DOWN buttons to scroll between each record.

First page:

<table>
<thead>
<tr>
<th>No</th>
<th>VSTART</th>
<th>VSTOP</th>
<th>Date and Time</th>
</tr>
</thead>
</table>

Where:

- No = Number of cycle (1 is the most recent)
- Vstart = Battery Voltage at the connection
- Vstop = Battery Voltage at the end of the charge
- Date and Time = Date and Time of the BEGINNING of the charge

Second page:

<table>
<thead>
<tr>
<th>Date and Time</th>
<th>ENCODE</th>
<th>Duration</th>
<th>Ah</th>
</tr>
</thead>
</table>

Where:

- Date and Time = Date and Time of the END of the charge
- ENCODE = Charge termination code (30 different codes identify all the possible situations that determined the termination of the charging cycle, see next paragraph).
- Duration = Total charging time
- Ah = Total capacity returned to the battery
CHARGE TERMINATION CODES

<table>
<thead>
<tr>
<th>GROUP 1:</th>
<th>CHARGE COMPLETED</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Battery modules recognized. Start charging.</td>
</tr>
<tr>
<td>01</td>
<td>Charge completed successfully.</td>
</tr>
<tr>
<td>02</td>
<td>Charge completed successfully.</td>
</tr>
<tr>
<td></td>
<td>Equalize NOT executed because battery was disconnected.</td>
</tr>
<tr>
<td>03</td>
<td>Charge completed successfully.</td>
</tr>
<tr>
<td></td>
<td>Equalize started but not completed, because battery was disconnected during the cool-down time before the Equalize cycle.</td>
</tr>
<tr>
<td>04</td>
<td>Charge completed successfully.</td>
</tr>
<tr>
<td></td>
<td>Equalize started but not completed, because battery was disconnected while the Equalize was in progress.</td>
</tr>
<tr>
<td>05</td>
<td>Charge completed successfully.</td>
</tr>
<tr>
<td></td>
<td>Over range maximum time during pulsed</td>
</tr>
<tr>
<td>06</td>
<td>Desulphation cycle completed successfully.</td>
</tr>
<tr>
<td>07</td>
<td>Charge completed successfully.</td>
</tr>
<tr>
<td></td>
<td>Equalize completed successfully.</td>
</tr>
<tr>
<td></td>
<td>Refresh-Cycle NOT executed because battery was disconnected.</td>
</tr>
<tr>
<td>08</td>
<td>Charge completed successfully.</td>
</tr>
<tr>
<td></td>
<td>Equalize completed successfully.</td>
</tr>
<tr>
<td></td>
<td>Refresh-Cycle started but not completed, because battery was disconnected while the Refresh was in progress.</td>
</tr>
<tr>
<td>09</td>
<td>Charge completed successfully.</td>
</tr>
<tr>
<td></td>
<td>Equalize completed successfully.</td>
</tr>
<tr>
<td></td>
<td>Refresh-Cycle completed successfully.</td>
</tr>
</tbody>
</table>
Gassing voltage reached successfully.
Full charge NOT executed because time window Disabled.

Charge completed successfully.
Equalize completed successfully.

GROUP 2: MANUAL STOP

11 Charge stopped manually, during a generic cooling state

20 Charge stopped manually, before to reach the gassing voltage.

21 Charge stopped manually, during the finishing charge.

22 Charge stopped manually, during eq.

23 Charge stopped manually, during refresh.

24 Charge stopped manually, during desulphation.

GROUP 3: BATTERY DISCONNECTED

30 The battery has been disconnected before the begin of the charge, while the charger was waiting for the programmed Start Time window.

31 The battery has been disconnected during the first part of the charge, before to reach the gassing voltage.

32 Successful Opportunity charging cycle.
The battery reached the gassing point, the charger entered in stand-by mode waiting for the Full Charge/Overcharge time window, and at that point the battery has been disconnected.

33 The battery has been disconnected during the finishing charge, while it was cooling between two charging pulses.
34
The battery has been disconnected during the finishing charge, while it was receiving a charging pulse.

36
Charge never started.
The battery has been disconnected while the charger was trying to establish a wireless connection with the Battery Identification Module (WBM).

37
Charge never started.
The battery has been disconnected while the charger was communicating with the Battery Identification Module (WBM).

38
Desulphation cycle NOT completed.
The battery has been immediately disconnected, at the beginning of the Desulphation cycle.

39
Desulphation cycle NOT completed.
The battery has been immediately disconnected, before to complete the programming of the Desulphation cycle.

40
Desulphation cycle NOT completed.
The battery has been disconnected while the Desulphation cycle was in progress.

GROUP 4: EMERGENCY STOP

60
Emergency Stop!
Maximum voltage limit exceeded during first part of the charge, before to reach the gassing voltage.

61
Emergency Stop!
Maximum voltage exceeded during the finishing charge.

62
Emergency Stop!
Maximum voltage exceeded during the equalize cycle.

63
Emergency Stop!
Gassing voltage not reached within the predetermined time limit.

64
Charge never started.
Battery voltage was too LOW

65
Charge never started.
Battery voltage was too HIGH

66
Emergency Stop!
Maximum Current Limit Exceeded.

67
Emergency Stop!
Maximum voltage exceeded during the refresh cycle.

68
Emergency Stop!
Maximum temperature exceeded before to reach the gassing voltage.

69
Emergency Stop!
Maximum temperature exceeded during the finishing charge.

70
Emergency Stop!
Maximum temperature exceeded during the equalize cycle.

71
Emergency Stop!
Maximum temperature exceeded during the refresh cycle.

72
Emergency Stop!
When a battery is connected, the WBM communicate that the voltage of battery is not compatible with this charger

76
Emergency Stop!
Maximum temperature exceeded during desulphation.
GROUP 5: WARNING MESSAGES

80
Maximum finishing charge time (safety timer) exceeded.
Charge termination criteria (dV/dt) not reached.

82
The battery has been disconnected while the charge was in progress, in a generic state.

83
Output fuse blown.

85
Communication problem with Wireless Battery Module.

99
Black out of the AC input.

www.montrealchargeur.com
www.battelec.ca
www.doctorfleet.com

- End of Manual -